Fish farming is widely practiced around the world. Fish is an important source of protein and contributes to the supply of highly nutritious animal protein in Côte d'Ivoire. Pollution of fish farms by toxic metals can lead to contamination of farmed fish. This study evaluates the content of trace metallic elements (TME), which are arsenic (As) and cadmium (Cd) in the water and sediments of a pond farm located in Abengourou in the east of Côte d'Ivoire. Water and sediment samples were collected from a dam and three ponds on the farm in September and October 2020. These samples were analyzed using an atomic absorption spectrophotometer. All data was processed using STATISTICA 7.1 and was used to calculate Metal Pollution Index (MPI), Ratio Sediment/Water (RS/W), Contamination Factor (CF), the pollution load index (PLI), the individual potential risk index (Er) and the ecological risk index (PERI) in order to assess the level of metal contamination of the fish farm. The mean concentrations of metallic trace elements are higher in the sediments (As: 0.2045±0.218496 - 0.3950±0.1103 mg/kg; Cd: 0.0565±0.0148 - 0.0880±0.0212 mg/kg) than in water (As: (0.1837±0.0148) × 10-2 - (0.2296±0.0300) × 10-2 mg/L; Cd: (0,1150±0.0129) × 10-2 - (0.1250±0.0076) × 10-2 mg / L). Sediments also have the highest overall metal contents. However, MPI<1 in both sediment and water. The CF (As=0.102±0.109 - 0.198±0.055; Cd=0.565±0.148 - 0.880±0.212) showed that the sediments were not contaminated. The PLI (0.253±0.062 - 0.335±0.090) indicated that the sediments on the fish farm were not polluted. In addition, Er (As: 1.02±1.09 - 1.98±0.55; Cd: 16.95±4.44 - 26.40±6.36) and PERI (18.93±4.99 - 27.59±7.57) showed that the sediments do not pose an ecological risk to farmed fish. However, RS/W>1 showed strong mobility of TMEs from water to farm sediments. The concentrations of trace metal elements assayed in the samples were below the recommended standard for freshwater aquaculture. The CF, PLI, Er and PERI indices indicate a low degree of contamination, pollution and a low ecological risk. However, RS/W indicate high mobility of TME from water to sediment.
Published in | Agriculture, Forestry and Fisheries (Volume 11, Issue 2) |
DOI | 10.11648/j.aff.20221102.15 |
Page(s) | 90-99 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2022. Published by Science Publishing Group |
Trace Metal Elements, Fish Pond, Water, Sediment, Pollution, Côte d’Ivoire
[1] | S. Coulibaly, M. Coulibaly, and B. C. Atse, Contamination à l’arsenic des eaux et des sédiments des zones continentale et maritime de la partie ouest de la Lagune Ebrié (Côte d’Ivoire), International Journal of Innovation and Applied Studies, 25 (2), 2019, pp. 577-585. |
[2] | C. Kaki, P. Guedenon, N. Kelome, P. A. Edorh, and R. Adechina, Evaluation of heavy metals pollution of Nokoue Lake, African Journal of Environmental Science and Technology, 5 (3), 2011, pp. 255-261. |
[3] | EPA, Aquatic biodiversity. EPA. http://www.epa.gov/bioiweb1/aquatic/pollution.html, 2009, consulté le 12/10/2020. |
[4] | M. B. Mostafa, A. M. Al-Akraa, and A. H. Khalil, Ultrasonographic assessment of superficial digital flexor tendon (SDFT) core lesion treated with platelet rich plasma (PRP) in donkeys (Equus Asinus), Benha veterinary medical journal, 29 (2), 2015, pp. 274-282. |
[5] | G. Darko, D. Azanu, and K. N. Logo, Accumulation of toxic metals in fish raised from sewage-fed aquaculture and estimated health risks associated with their consumption, Cogent Environmental Science, 2 (1), 2016, pp. 1-12. |
[6] | M. M. Adeyemi, and A. I. Ugah, Evaluation of concentration of some heavy metals in water, soil, and fish from ponds in Lugbe, Idu and Kuje in the Federal Capital Terrory (FCT), Abuja, Nigeria, Journal of Environmental Science, Toxicology and Food Technology, 11 (5), 2017, pp. 39-43. |
[7] | S. Coulibaly, B. C. Atse, and K. M. Koffi, Contamination aux métaux lourds de la matrice eau-sédiment et muscle du tilapia Oreochromis niloticus de trois fermes piscicoles en Côte d’Ivoire. Agronomie Africaine, 30 (3), 2018, pp. 249–259. |
[8] | S. H. Junejo, J. A. Baig, T. G. Kazi, and H. I. Afridi, Cadmium and Lead Hazardous Impact Assessment of Pond Fish Species. Biological Trace Element Research, 191, 2019, pp. 502–511. doi: 10.1007/s12011-018-1628-z. |
[9] | A. Sanou, S. Coulibaly and B. C. Atse, Évaluation de la capacité de fixation des métaux lourds par les sédiments d’une ferme piscicole en étang. Afrique Science, 16 (4), 2020, pp. 85-97. |
[10] | A. Sanou, S. Coulibaly, M. Coulibaly, S. N. N’dri and B. C. Atse, Assessment of heavy metal contamination of fish from a fish farm by bioconcentration and bioaccumulation factors. Egy. J. of Aquat. Biol. & Fisheries., 25 (1), 2021, pp. 821–841. |
[11] | A. Sanou, Détermination du niveau de contamination métallique des eaux et des sédiments de trois fermes piscicoles en Côte d’Ivoire, Mémoire de Master, Université Jean Lorougnon Guédé, Daloa, Côte d’Ivoire, 2018, 100p. |
[12] | R. C. A. Oliveira, L. Belger, E. Pelletier and C. Rouleau, Histopathological evidence of inorganic mercury and methyl mercury toxicity in the arctic charr (Salvenilus alpinus). Environmental Research, 90 (3), 2002, pp. 217-225. |
[13] | H. Djeddi, S. Kherief-Nacereddine, D. Keddari, and F. Z. Afri-Mehennaoui, Teneurs des éléments traces métalliques Cu, Zn et Pb des sédiments du barrage Béni Haroun (Nord-Est de l’Algérie). European Scientific Journal, 15, 2018, pp. 1857- 7431. |
[14] | E. F. T. Tanon, Qualité environnementale d’une ferme piscicole en étang: risque potentiel de toxicite pour les poissons d’élevage, Mémoire de Master, Université Félix Houphouet – Boigny, Abidjan - Cocody, Côte d’Ivoire, 2020, 59p. |
[15] | AFNOR, Qualité de l'eau, recueil des normes françaises, Editions AFNOR, Paris, 1997, 46p. |
[16] | EPA, SW-846 test methods for evaluating solid waste, physical-chemical methods, method 6010 C: inductively coupled plasma-atomic emission spectrometry. http://www.epa.gov/OSW/hazard/testmethods/sw846/pdfs/6010c.pdf, 2007, Accessed 9 jan 2008. |
[17] | UNEP, Manuel d’échantillonnage et d’analyse des sédiments, UNEP (DEPI)/MED WG. 321/Inf4. United Nations Environment Programme, 2007, 26p. https://wedocs.unep.org/rest/bitstreams/7633/retrieve, Consulté le 25/12/2020. |
[18] | A. Aminot, and M. Chaussepied, Manuel des analyses chimiques en milieu marin. CNEXO, Editions jouve, Paris, 1983, 395p. |
[19] | J. Usero, E. Gonzalez-Regalado, I. Gracia, Trace metals in the bivalve molluscs Ruditapes decussatus and Ruditapes philippinarum from the Atlantic Coast of Southern Spain. Environment International, 23 (3), 1997, 291–298. doi: 10.1016/s0160-4120(97)00030-5. |
[20] | M. H. Rezaie-Boroon, V. Toress, S. Diaz, T. Lazzaretto, M. Tsang and D. D. Deheyn, The Geochemistry of Heavy Metals in the Mudflat of Salinas de San Pedro Lagoon, California, USA. Journal of Environmental Protection, 4, 2013, 12-25. |
[21] | K. H. Wedepohl, The composition of continental crust. Goechimica and Cocmochimica Acta, 59 (7), 1995, 1217-123. |
[22] | L. Hakanson, Ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14 (5), 1980, 975–1001. |
[23] | U. Förstner, W. Calmano, K. Conradt, H. Jaksch, C. Schimkus and J. Schoer, Chemical speciation of heavy metals in solid waste materials (sewage sludge, mining wastes, dredged materials, polluted sediments) by sequential extraction. International Conference Heavy Metals in the Environment, Amsterdam, Edinburgh. Conference Paper, 1 (3), 1981, pp. 698-704. |
[24] | A. Enuneku, O. Omoruyi, I. Tongo, E. Ogbomida, O. Ogbeide and L. Ezemonye, Evaluating the potential health risks of heavy metal pollution in sediment and selected benthic fauna of Benin River, Southern Nigeria. Applied Water Science, 8 (224), 2018, pp. 1-13. |
[25] | D. L. Tomlinson, J. G. Wilson, C. R. Harris, and D. W. Jeffrey, Problems in the Assessment of Heavy-Metal Levels in Estuaries and the Formation of a Pollution Index. Helgoländer Meeresuntersuchungen, 33, 1980, pp. 566-575. |
[26] | A. Barakat, M. El Baghdadi, J. Rais, and S. Nadem, Assessment of heavy metal in surface sediments of Day River at Beni-Mellal Region, Morocco. Res J Environ Earth Sci 4 (8), 2012, pp. 797–806. |
[27] | Z. Zhang, L. Juying, Z. Mamat, and F. Y. Qing., Sources identification and pollution evaluation of heavy metals in the surface sediments of Bortala River, Northwest China. Ecotoxicology and Environmental Safety, 126, 2016, pp. 94–101. |
[28] | L. Zhang, and J. Liu, In situ relationships between spatial–temporal variations in potential ecological risk indexes for metals and the short-term effects on periphyton in a macrophyte-dominated lake: a comparison of structural and functional metrics. Ecotoxicology (2014) 23 (4), pp. 553–566. doi: 10.1007/s10646-014-1175-0. |
[29] | X. Ke, S. Gui, H. Huang, H. Zhang, C. Wang, W. Guo, Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. Chemosphere, 175 (Supplement C), 2017, pp. 473–481. |
[30] | H. S. Lim, J. S. Lee, H. T. Chon, and Sager M., Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au–Ag mine in Korea. Journal of Geochemical Exploration, 96 (23), 2008, pp. 223–230. |
[31] | S. Coulibaly, Bioaccumulation des métaux lourds et effets biologiques induits chez Saratherodon melanotheron rüppell, 1852 pêché dans la Baie de Bietri en Lagune Ebrié (Côte d’Ivoire). Thèse de Doctorat, Université Felix Houphouët Boigny (Abidjan, Côte d’Ivoire), 2013, 214p. |
[32] | C. Mélard, Bases biologiques de l’aquaculture: Notes de cours. Université de Liège (Belgique): Centre de formation et de Recherche en Aquaculture, 1999, 238p. |
[33] | W. J. A. R. Viveen, C. J. J. Richter, P. G. W. J. Van Oordt, J. A. L. Janssen, and E. A. Huisman, Manuel pratique de pisciculture du poisson-chat africain (Clarias gariepinus), 1985, 128p. |
[34] | E. Mamadou, Caractérisation zootechnique de Oreochromis niloticus (Linné, 1758), O. hornorum (Trewavas, 1960) et de l’hybride issu du croisement de O. niloticus femelle×O. hornorum mâle. Mémoire de DEA, Université de Cocody, Abidjan, Côte d’Ivoire, 1998, 41p. |
[35] | Boyd, 1982. |
[36] | C. Malcolm, H. Beveridje and B. J. McAndrew, Tilapias: biologie and exploitation. Institute of aquaculture. University of stirling, Scotland. Kluwer Academic Publishers, 2000, 185 p. |
[37] | E. E. Obasohan, J. A. O. Oronsaye and E. E. Obano, Heavy metal concentrations in Malapterurus electricus and Chrysichthys nigrodigitatus from Ogba river in Benin City. African Journal of Biotechnology, 5, 2006, pp. 974 – 982. |
[38] | M. Coulibaly, Développement de méthodes électrochimiques pour la détection de trace de métaux lourds: application à l’analyse du cuivre, du sélénium et du manganèse dissous dans des milieux complexes. Mémoire de Thèse de Doctorat. Université de Cocody, Côte d’Ivoire, 2008, 325p. |
[39] | K. M. Koffi, S. Coulibaly, B. C. Atsé, and E. P. Kouamelan, Survey of heavy metals concentrations in water and sediments of the estuary bietri bay, ebrie lagoon, Côte d’Ivoire. International Journal of Research In Earth & Environmental Sciences, 1 (3), 2014, pp. 1–10. |
[40] | L. Vilizzi, and A. S. Tarkan, 2016, Bioaccumulation of metals in common carp (Cyprinuscarpio L.) from water bodies of Anatolia (Turkey): a review with implications for fisheries and human food consumption. Environmental Monitoring and Assessment, 188 (4), 24 p. doi: 10.1007/s10661-016-5248-9. |
[41] | S. Yi, N. Sahni, K. J. Daniels, K. L. Lu, G. Huang, A. M. Garnaas, C. Pujol, T. Srikantha, and D. R. Soll, Utilization of the mating scaffold protein in the evolution of a new signal transduction pathway for biofilm development. MBio, 2 (1), 2011, pp. 7-10. |
[42] | A. T. Ibrahim, E. T. Wassif, and M. S. Alfons, Heavy metals assessment in water, sediments and some organs of Oreochromis niloticus under the Impact of sewage water. Journal of Heavy Metal Toxicity and Diseases, 1 (1), 2016, pp. 1-7. |
[43] | N. M. Kouamenan, S. Coulibaly, B. C. Atse, and B. G. Goore, Seasonal and spatial variations of heavy metals in water and sediments from mainland and maritime areas of Ebrie lagoon (Côte d’Ivoire, Western Africa), International Journal of Biological and Chemical Sciences, 13 (4), 2019, pp. 2374–2387. |
[44] | H. Bouzenzana, Contribution à l’étude des paramètres physico-chimiques et la biodiversité algale des cours d’eau de la région d’Oued Athmenia (Mila). Mémoire de Master, Université des Frères Mentouri Constantine (Algérie), 2015, 58p. |
[45] | M. Mohammad, and M. Muhammad, Accumulation of Lead (Pb) in Blood Clams. AnadaragranosaL. Inhabiting DenselyIndustrial Area in Sidoarjo. East Java. Indonesia. 3rd International Conference on Chemical, Agricultural and Medical Sciences (CAMS-2015) Singapore, 2015, 4p. (http://dx.doi.org/10.15242/IICBE.C1215023). |
[46] | B. Montuelle, Qualité et gestion des sédiments d'eau douce - Éléments physicochimiques et biologiques. Cemagref Éditions 2003, ch. 6, 332 p. |
[47] | C. Bliefert and R. Perraud, Chimie de l'environnement, DeBoeck Université, 2001, 369–401, ch. 23, 477p. |
[48] | S. A. Abdel Ghani, Trace metals in seawater, sediments and some fish species from Marsa Matrouh Beaches in north-western Mediterranean coast, Egypt. Egyptian Journal of Aquatic Research, 41, 2015, pp. 145–154. DOI: 10.1016/j.ejar.2015.02.006. |
[49] | A. B. Andem, K. A. Okorafor, E. E. Oku, and A. A. Ugwumba, Evaluation And Characterization Of Trace Metals Contamination In The Surface Sediment Using Pollution Load Index (PLI) And Geo-Accumulation Index (Igeo) of Ona River, Western Nigeria. International Journal of Scientific & Technology Research 4 (1), 2015, pp. 29-34. |
APA Style
Ali Sanou, Safiatou Coulibaly, Essignan Fabrice Tresor Tanon, Mehinta Baro, Namory Meite, et al. (2022). Contamination Level of Arsenic and Cadmium in the Water and Sediments of a Fish Farm: Application of Contamination Indices. Agriculture, Forestry and Fisheries, 11(2), 90-99. https://doi.org/10.11648/j.aff.20221102.15
ACS Style
Ali Sanou; Safiatou Coulibaly; Essignan Fabrice Tresor Tanon; Mehinta Baro; Namory Meite, et al. Contamination Level of Arsenic and Cadmium in the Water and Sediments of a Fish Farm: Application of Contamination Indices. Agric. For. Fish. 2022, 11(2), 90-99. doi: 10.11648/j.aff.20221102.15
AMA Style
Ali Sanou, Safiatou Coulibaly, Essignan Fabrice Tresor Tanon, Mehinta Baro, Namory Meite, et al. Contamination Level of Arsenic and Cadmium in the Water and Sediments of a Fish Farm: Application of Contamination Indices. Agric For Fish. 2022;11(2):90-99. doi: 10.11648/j.aff.20221102.15
@article{10.11648/j.aff.20221102.15, author = {Ali Sanou and Safiatou Coulibaly and Essignan Fabrice Tresor Tanon and Mehinta Baro and Namory Meite and Ange Marie Lydie Guei and Boua Celestin Atse}, title = {Contamination Level of Arsenic and Cadmium in the Water and Sediments of a Fish Farm: Application of Contamination Indices}, journal = {Agriculture, Forestry and Fisheries}, volume = {11}, number = {2}, pages = {90-99}, doi = {10.11648/j.aff.20221102.15}, url = {https://doi.org/10.11648/j.aff.20221102.15}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.aff.20221102.15}, abstract = {Fish farming is widely practiced around the world. Fish is an important source of protein and contributes to the supply of highly nutritious animal protein in Côte d'Ivoire. Pollution of fish farms by toxic metals can lead to contamination of farmed fish. This study evaluates the content of trace metallic elements (TME), which are arsenic (As) and cadmium (Cd) in the water and sediments of a pond farm located in Abengourou in the east of Côte d'Ivoire. Water and sediment samples were collected from a dam and three ponds on the farm in September and October 2020. These samples were analyzed using an atomic absorption spectrophotometer. All data was processed using STATISTICA 7.1 and was used to calculate Metal Pollution Index (MPI), Ratio Sediment/Water (RS/W), Contamination Factor (CF), the pollution load index (PLI), the individual potential risk index (Er) and the ecological risk index (PERI) in order to assess the level of metal contamination of the fish farm. The mean concentrations of metallic trace elements are higher in the sediments (As: 0.2045±0.218496 - 0.3950±0.1103 mg/kg; Cd: 0.0565±0.0148 - 0.0880±0.0212 mg/kg) than in water (As: (0.1837±0.0148) × 10-2 - (0.2296±0.0300) × 10-2 mg/L; Cd: (0,1150±0.0129) × 10-2 - (0.1250±0.0076) × 10-2 mg / L). Sediments also have the highest overall metal contents. However, MPIS/W>1 showed strong mobility of TMEs from water to farm sediments. The concentrations of trace metal elements assayed in the samples were below the recommended standard for freshwater aquaculture. The CF, PLI, Er and PERI indices indicate a low degree of contamination, pollution and a low ecological risk. However, RS/W indicate high mobility of TME from water to sediment.}, year = {2022} }
TY - JOUR T1 - Contamination Level of Arsenic and Cadmium in the Water and Sediments of a Fish Farm: Application of Contamination Indices AU - Ali Sanou AU - Safiatou Coulibaly AU - Essignan Fabrice Tresor Tanon AU - Mehinta Baro AU - Namory Meite AU - Ange Marie Lydie Guei AU - Boua Celestin Atse Y1 - 2022/04/20 PY - 2022 N1 - https://doi.org/10.11648/j.aff.20221102.15 DO - 10.11648/j.aff.20221102.15 T2 - Agriculture, Forestry and Fisheries JF - Agriculture, Forestry and Fisheries JO - Agriculture, Forestry and Fisheries SP - 90 EP - 99 PB - Science Publishing Group SN - 2328-5648 UR - https://doi.org/10.11648/j.aff.20221102.15 AB - Fish farming is widely practiced around the world. Fish is an important source of protein and contributes to the supply of highly nutritious animal protein in Côte d'Ivoire. Pollution of fish farms by toxic metals can lead to contamination of farmed fish. This study evaluates the content of trace metallic elements (TME), which are arsenic (As) and cadmium (Cd) in the water and sediments of a pond farm located in Abengourou in the east of Côte d'Ivoire. Water and sediment samples were collected from a dam and three ponds on the farm in September and October 2020. These samples were analyzed using an atomic absorption spectrophotometer. All data was processed using STATISTICA 7.1 and was used to calculate Metal Pollution Index (MPI), Ratio Sediment/Water (RS/W), Contamination Factor (CF), the pollution load index (PLI), the individual potential risk index (Er) and the ecological risk index (PERI) in order to assess the level of metal contamination of the fish farm. The mean concentrations of metallic trace elements are higher in the sediments (As: 0.2045±0.218496 - 0.3950±0.1103 mg/kg; Cd: 0.0565±0.0148 - 0.0880±0.0212 mg/kg) than in water (As: (0.1837±0.0148) × 10-2 - (0.2296±0.0300) × 10-2 mg/L; Cd: (0,1150±0.0129) × 10-2 - (0.1250±0.0076) × 10-2 mg / L). Sediments also have the highest overall metal contents. However, MPIS/W>1 showed strong mobility of TMEs from water to farm sediments. The concentrations of trace metal elements assayed in the samples were below the recommended standard for freshwater aquaculture. The CF, PLI, Er and PERI indices indicate a low degree of contamination, pollution and a low ecological risk. However, RS/W indicate high mobility of TME from water to sediment. VL - 11 IS - 2 ER -